library(tidyverse)
library(ggplot2)
library(MASS)
library(mfp)
data("birthwt")
data("Pima.tr")
Platelet<- read.table("data/Platelet.txt", header=T, sep="")
data(bodyfat, package="mfp")
saltBP <- read.table(file="data/saltBP.txt", header=T, sep="")
We can use the lm() function to fit a multiple linear regression model. We separate the explanatory variables with plus signs.
multReg <- lm(siri ~ abdomen + weight , data=bodyfat)
summary(multReg)
## 
## Call:
## lm(formula = siri ~ abdomen + weight, data = bodyfat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.6459  -3.2071  -0.0299   3.1664  10.5064 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -45.95237    2.60501 -17.640  < 2e-16 ***
## abdomen       0.98950    0.05672  17.447  < 2e-16 ***
## weight       -0.14800    0.02081  -7.112 1.21e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.456 on 249 degrees of freedom
## Multiple R-squared:  0.7188, Adjusted R-squared:  0.7165 
## F-statistic: 318.2 on 2 and 249 DF,  p-value: < 2.2e-16
We would like to predict a baby’s birthweight ({bwt}) using both mother’s weight at last menstrual period ({lwt}) and her smoking status ({smoke}).
Interpret the estimates of regression coefficients and comment on their statistical significance.
Find the 95% confidence interval for regression coefficients.
If mother’s weight at last menstrual period is 170 pounds and she was smoking during her pregnancy, what would be your estimate for the birthweight of her baby?
We want to examine how gender and heart rate might be associated with body temperature.